DEWATS - Exercise 2

A small quarter with 130 persons wishes to install a wastewater treatment plant. After long information and negotiation meetings with you as responsible engineer, the inhabitants of the quarter decide to install a baffled septic tank. But before taking a final decision they wish to know how much space this tank would require and how it would look like.

Question 1: Possible design Question 2: Volume per capita

Question 3: Wouldn't it be better (less space consuming) to construct a

traditional septic tank?

P=150 people Q_{d,max}=25m^{3*}d Q_{h,max}=2m^{3*}h (peak flow)

Results:

Settling chamber:

choice: HRT in chamber = 2h (required: HRT= 2-3h)

$$V_{tot} = V_{ww} + V_{scum} + V_{sludge} = 4m^3 + 1.3m^3 + 2.6m^3 = 8m^3$$

 V_{ww} based on HRT and $Q_{h,max}=2m^3*h$: $\underline{Vww}=Q_{h,max}*HRT=4m^3$

 $V_{\text{scum}} = P * \text{scum accumulation rate} = 130 * 10l/cap*a = 1.3m^3$

V_{sludge} = P * sludge accumulation rate = 130 * 20l/cap = <u>2.6m³</u>

Dimensions:

Typical depth: 1.5 - 2.5 m

length to breath ratio: approx. 1:1 to 2:1 length to height ratio: approx. 1.5:1

choice: $\underbrace{\text{width} = 2\text{m}}_{\text{depth} = 1.5\text{m}}$ control: I:w = 1.3 \rightarrow OK I:d = 1.8 \rightarrow OK length = 2.7m

Up-flow chambers:

HRT in total system must be greater than 12 hours choice: HRT in up-flow chambers =12 hours

 V_{tot} based on HRT and $Q_{d,max}$ =25 m^3 *h: V_{tot} = $Q_{d,max}$ * HRT = $\underline{13m^3}$

 $V_{uf} = V_{tot} - V_{ww}$ (in settling chamber) = $13 - 4 = 9m^3$

Dimensions:

choice: depth and width should be equal to the settling chamber (easier to construct)

→ length of up-flow filter = 9/(1.5*2) = 3m

How many up-flow chambers? \rightarrow length to height ratio should be about 0.5 to 0.6

 \rightarrow 4 chambers of 0.75m length each.

control: length up-flow chamber total = $4*0.75 = 3m \rightarrow OK$

up-flow velocity= $Q_{h,max}/A = Q_{h,max}/(0.75*2) = 1.3m/h \rightarrow OK (0.5 - 1.5m/h)$

Space must be foreseen for the down-flow of the wastewater → 0.25m length per chamber

 \underline{V}_{tot} = 8m³ (settling chamber) + 4(2*1.8*1.0) = $\underline{14.5m^3}$ (only "empty volume" without construction mass)

Volume per capita = 14.5 / 130 = 110 l/cap

Compared to the septic tank in exercise 1, the required treatment volume per capita is 3 times lower. This is due to the fact that there is a basically different dominant treatment process:

Septic tank: Sedimentation, longer HRT

Baffled septic tank: anaerobic degradation, smaller HRT

But: cost aspects must also be considered!