New Insights in matters of Plant Nutrition, Soil Microbes and their role in Recycling of Human Excretas and regenerating Soil Fertility

Outline

1 Natural Cycles

- 1.1 Conventional version
- 1.2 Endocytosis as the Missing Link
- 1.3 Ecologically sound version

2 Simple and vivid experiments in matters of feeding plants

3 Recycling Human Excreta the natural way

- 3.1 Plant Nutrients in Human Excretas
- 3.2 Metabolic pathways of principle constituents
- 3.2.1 Average soluble solids of urine
- 3.2.2 Disastrous, spontaneous desamination
- 3.2.3 Selected Microbes for Inoculation
- 3.2.4 Controlled metabolization of organic nitrogen
- 3.2.5 Integrated approach for a *controlled metabolization*
- 3.2.6 Composting faecal matter through Terra preta Sanitation

4 Terra preta

- 4.1 A few aspects of Charcoal amendments in the soil
- 4.2 Characteristics
- 4.3 Potentials of Terra preta

5 Pathways how plants become attacked and infested by diseases

1 Natural Cycles 1.1 Conventional version

1.2 Endocytosis as the Missing Link

1.3 Ecologically sound version

2 Simple and vivid experiments in matters of feeding plants

2 Simple and vivid experiments in matters of feeding plants

- **3** Recycling Human Excreta the natural way
- 3.1 Plant Nutrients in Human Excretas

	urine (500 l/year)	faeces (50 l/year)	total (kg/year)
Ν	4,0	0,5	4,5
Р	0,4	0,2	0,6
K	0,9	0,3	1,2

(urine amounts to ca. 90 per cent of volume of excretas contains ca. 80 per cent of total plant nutrients)

- **3.2** Metabolic pathways of principle constituents of urine
- 3.2.1 Average soluble solids of urine per person per day

organic components		inorganic substances	
urea	20 – 30 g	sodium chloride	15 g
uric acid	0,7 g	phosphate	2,5 g
creatinine	0,7 g	sulphate	2,5 g
urobiline	traces	potassium	2,2 g
urochrome	traces	calcium	0,2 g

3.2.2 Disastrous, spontaneous fermentation process

3.2.3 Selected Microbes for Inoculation

1 Bacillus subtilis

generates microbial m u c u s aids in formation of humified substances, enzymes, special hormones for supporting plant growth suppresses soil-born diseases a heat-resistant microbe

2 Bacillus mesentericus

aids in humification of crude organic matter at lower temperatures

3.2.3 Selected Microbes for Inoculation

3 Geobacillus stearothermophilus

aids in the formation of microbial enzymes and lactic acid decomposes potentially toxic substances (phenolic compounds, plant resins, waxes, turpentine, complex tannins) a heat-resistant microbe

4 Azotobacter croococcum

generates organic nitrogen through biologic nitrogen fixation

5 Lactobacillus spec.

forms lactic acid suppresses putrescent germs stops ineffective decomposition of complex organic matters

3.2.4 Controlled metabolization

3.2.5 Integrated approach for a controlled metabolization

desirable C/N ration for best humification between 21 and 24

3.2.6 Composting faecal matter through Terra preta Sanitation

Faecal flora -inappropriate for soil metabolism -incompatible with soil life

Geobacillus stearothermophilus Bacillus subtilis Bacillus mesentericus Lactobacillus

steering microbes aid in transition to soil life

Transitional change:

Post- treatment procedure:

4 Terra preta

4.1 A few aspects of Charcoal amendments in the soil

In the 1990's a special type of soil named *Terra preta do Indio* was discovered which have been' invented' and developed by indigenous tribes of South America centuries ago.

Origins of black carbon :	 pyrolysis of lignocellulose enzymatic conversion of 	
	organic matter	
	(f.i. by Aspergillus niger)	
	organic matter (f.i. by Aspergillus niger)	

The backbone of charcoal - polycondensed aromatic moieties

chemically and biologically persistant

physical structure: porous

when partly oxidized - nutrient retention increased

microphotograph - charcoal

microbiologic effects:

- growth rates of microbes increases
- change in abundance of certain microbes:
 - chare of fungi decreases
 - chare of bacterial populations increases
 - chare of gram-negative germs reduced
 - ectomycorrhizal and arbuscular mycorrhizal fungi supported

beneficial effects for plant growth:

- higher nutrient availability in the soil (N, P, K, Ca, Zn)
- (a.o. due to higher CEC)
- crop yield significantly increased

Its characteristics are virtually amazing:

- It is characterized by several k e y substances, especially <u>coprostanol</u> and <u>charcoal particles</u> which indicates that it is a genuine anthropogenic soil and originated from the transformation of human excretas and waste
- 2. according to conventional theories of soil formation it mustn't occur in tropical climates (!)
- 3. it is extremely rich in long-lasting, persistant organic carbon (build up by stabile humus compounds)
- 4. is inhabited by billions of soil organisms such as *fungi*, Streptomycetes, bacteria, nematods, arthropods, crustaceas, oligochaetes, soil insects a.o.

- 5. stores large amounts of water
- 6. stores plenty of plant nutrients
- is self-generating which means that it reproduces its very high fertility by itself : ones created in the upper soil, its seems to move downwards and increases its fertile horizons to a depth of several metres
- 8. resists depletion and destruction
- 9. retains its fertility for centuries
- 10. supports the establishment of the original indigenous flora and fauna and apparently complete ecosystems which often have been regarded as having gone lost forever.

4.3 Potentials of Terra preta

- 1. persistant an comprehensive improvement of soils in agriculture, horticulture, forestry
- 2. considerable increase of soil productivity and simultaneous protection of resources
- 3. decisive reduction and even annihilation of soil degradation and desertification processes
- 4. reestablishment of a persistant vegetation in desertified areas
- 5. comprehensive erosion control
- 6. considerable increase of the capacity of water and nutrient retention
- 7. prevention of flooding and water erosion

- 8. implementation of local water cycles and water economy
- 9. considerable reduction of *carbon dioxide release* by increase of carbon storage in the soil
- 10. decisive reduction of *methane* and *Nitrogen oxides* in agriculture
- 11. comprehensive improvement of recycling processes of organic matter in municipal and agricultural waste
- 12. cost reduction in municipal and agricultural waste management
- 13. reestablishment as well as increase of *biodiversity* in landscapes and threatened ecosystems
- 14. improvement of crop quality in the widest sense

5 Pathways how plants become attacked and infested by diseases

Thank you for your attention!