

# Training Program on Sustainable Natural and Advance Technologies and Business Partnerships for Water & Wastewater Treatment, Monitoring and Safe Water Reuse in India

# wfSRC- Training Session Plan

# Title of the training session Wastewater Fertigated Short Rotation Coppice (wfSRC)

#### Author(s) of the training session

Prof. Nadeem Khahil, Carlos A. Arias, Ph.D., Mirko Hänel

#### Short description of the session

The training session, participants will dive deep into the principles, work principle, design criteria, and a real-life case study of the innovative wfSRC system. Through a complete training, discussion and a practical exercise, participants will explore the underlying principles behind the wfSRC system. They will gain in-depth knowledge of the design criteria specific to the wfSRC system, including considerations for raw or pre-treated wastewater application and treatment processes. Furthermore, participants will have the opportunity to explore a successful case study that displays the implementation of the wfSRC system, highlighting the design challenges, strategies employed, and the positive environmental outcomes achieved.

#### **Learning objectives**

At the end of this session, participants will be able to:

- 1. Gain a comprehensive understanding of the wfSRC system, including its components, processes, and functionality
- 2. Learn the design criteria, parameters, and additional requirements specific to the wfSRC system
- 3. Understand the selection criteria for the materials, equipment and technologies suitable for the wfSRC system
- 4. Learn how to effectively integrate the different components of the wfSRC system

- 5. Gain insight into the operational parameters, monitoring and maintenance specific to the wfSRC system
- 6. Learn how to evaluate the performance of the system, including sampling, analysis, and compliance requirements
- 7. Understand the steps involved in commissioning and starting up the wastewater treatment system

# Trainer's required profile

The trainer should have an extensive knowledge and experience in water treatment, wastewater treatment and reuse, environmental engineering, land use management and fertilization as well as experience managing projects dealing with water management, biomass production and reuse concepts

### **Expected duration of the training session**

3 hours, with a break of 15 minutes

# Methodology and key contents of the session

| Time   | Topic                                                                                                   | Key contents                                                                                          | Slides<br>Numbers |
|--------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|
| 5 min  | Introduction to the session                                                                             | Presentation of the instructors, learning objectives, agenda                                          | 5                 |
| 10 min | Introduction to the technology (background overview, principles, performance expected, appropriateness) | Description of the system, working principle, treatment processes, general considerations, advantages | 6                 |
| 60 min | Design of the technology (key considerations, basic calculations, key formulas, etc.)                   | wfSRC design criteria, design considerations, data required                                           | 15                |
| 15 min | Break                                                                                                   |                                                                                                       | 1                 |
| 20 min | Construction and/or implementation                                                                      | Activities required for the construction and implementation of the system, materials and equipment    | 11                |
| 20 min | Operation and maintenance                                                                               | O&M activities, maintenance tasks, control and follow up Costs                                        | 9                 |
| 30 min | Example: the PAVITR pilot                                                                               | Presentation of the case study                                                                        | 8                 |

| 10 min | Homework: exercise to | Practical exercise | 4 |
|--------|-----------------------|--------------------|---|
|        | design/implement the  |                    |   |
|        | technology for a case |                    |   |
|        | study                 |                    |   |
| 10 min | Final remarks &       |                    |   |
|        | Conclusion of the     |                    |   |
|        | session               |                    |   |

**Credits:** this training has been created in the framework of the EU-Indian Joint Project "PAVIRT-Potential and Validation of Sustainable Natural & Advance Technologies for Water & Wastewater Treatment, Monitoring and Safe Water Reuse in India". This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No821410 and the Department of Sciences and Technology of India under the Grant DST/IMRCD/India-EU/Water Call2/PAVITR/2018 (G). For more information, please visit: <a href="https://pavitr.net">https://pavitr.net</a>